STM32-Custom-Bootloader-and.../App1/Drivers/CMSIS/DSP/Source/BasicMathFunctions/arm_shift_q15.c
2023-04-22 10:18:26 +02:00

237 lines
6.3 KiB
C

/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_shift_q15.c
* Description: Shifts the elements of a Q15 vector by a specified number of bits
*
* $Date: 27. January 2017
* $Revision: V.1.5.1
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_math.h"
/**
* @ingroup groupMath
*/
/**
* @addtogroup shift
* @{
*/
/**
* @brief Shifts the elements of a Q15 vector a specified number of bits.
* @param[in] *pSrc points to the input vector
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
* @param[out] *pDst points to the output vector
* @param[in] blockSize number of samples in the vector
* @return none.
*
* <b>Scaling and Overflow Behavior:</b>
* \par
* The function uses saturating arithmetic.
* Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated.
*/
void arm_shift_q15(
q15_t * pSrc,
int8_t shiftBits,
q15_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counter */
uint8_t sign; /* Sign of shiftBits */
#if defined (ARM_MATH_DSP)
/* Run the below code for Cortex-M4 and Cortex-M3 */
q15_t in1, in2; /* Temporary variables */
/*loop Unrolling */
blkCnt = blockSize >> 2U;
/* Getting the sign of shiftBits */
sign = (shiftBits & 0x80);
/* If the shift value is positive then do right shift else left shift */
if (sign == 0U)
{
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while (blkCnt > 0U)
{
/* Read 2 inputs */
in1 = *pSrc++;
in2 = *pSrc++;
/* C = A << shiftBits */
/* Shift the inputs and then store the results in the destination buffer. */
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pDst)++ = __PKHBT(__SSAT((in1 << shiftBits), 16),
__SSAT((in2 << shiftBits), 16), 16);
#else
*__SIMD32(pDst)++ = __PKHBT(__SSAT((in2 << shiftBits), 16),
__SSAT((in1 << shiftBits), 16), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
in1 = *pSrc++;
in2 = *pSrc++;
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pDst)++ = __PKHBT(__SSAT((in1 << shiftBits), 16),
__SSAT((in2 << shiftBits), 16), 16);
#else
*__SIMD32(pDst)++ = __PKHBT(__SSAT((in2 << shiftBits), 16),
__SSAT((in1 << shiftBits), 16), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4U;
while (blkCnt > 0U)
{
/* C = A << shiftBits */
/* Shift and then store the results in the destination buffer. */
*pDst++ = __SSAT((*pSrc++ << shiftBits), 16);
/* Decrement the loop counter */
blkCnt--;
}
}
else
{
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while (blkCnt > 0U)
{
/* Read 2 inputs */
in1 = *pSrc++;
in2 = *pSrc++;
/* C = A >> shiftBits */
/* Shift the inputs and then store the results in the destination buffer. */
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pDst)++ = __PKHBT((in1 >> -shiftBits),
(in2 >> -shiftBits), 16);
#else
*__SIMD32(pDst)++ = __PKHBT((in2 >> -shiftBits),
(in1 >> -shiftBits), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
in1 = *pSrc++;
in2 = *pSrc++;
#ifndef ARM_MATH_BIG_ENDIAN
*__SIMD32(pDst)++ = __PKHBT((in1 >> -shiftBits),
(in2 >> -shiftBits), 16);
#else
*__SIMD32(pDst)++ = __PKHBT((in2 >> -shiftBits),
(in1 >> -shiftBits), 16);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
/* Decrement the loop counter */
blkCnt--;
}
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = blockSize % 0x4U;
while (blkCnt > 0U)
{
/* C = A >> shiftBits */
/* Shift the inputs and then store the results in the destination buffer. */
*pDst++ = (*pSrc++ >> -shiftBits);
/* Decrement the loop counter */
blkCnt--;
}
}
#else
/* Run the below code for Cortex-M0 */
/* Getting the sign of shiftBits */
sign = (shiftBits & 0x80);
/* If the shift value is positive then do right shift else left shift */
if (sign == 0U)
{
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while (blkCnt > 0U)
{
/* C = A << shiftBits */
/* Shift and then store the results in the destination buffer. */
*pDst++ = __SSAT(((q31_t) * pSrc++ << shiftBits), 16);
/* Decrement the loop counter */
blkCnt--;
}
}
else
{
/* Initialize blkCnt with number of samples */
blkCnt = blockSize;
while (blkCnt > 0U)
{
/* C = A >> shiftBits */
/* Shift the inputs and then store the results in the destination buffer. */
*pDst++ = (*pSrc++ >> -shiftBits);
/* Decrement the loop counter */
blkCnt--;
}
}
#endif /* #if defined (ARM_MATH_DSP) */
}
/**
* @} end of shift group
*/